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Abstract. A novel 3D shape preserving data reduction technique for managing the amount of data acquired by laser scanning
is presented that overcomes the shortcomings of existing filter-based methods. The technique is based on a discrete Gaussian
image of the scanned points which is obtained by estimating surface normals and projecting them into a Gaussian sphere. The
discrete Gaussian image is then used to partition the points into cells. In each cell, a reference point and its neighbours are
used to determine the cell representative point and all other points are removed. The performance of the proposed method is
illustrated using a range of point clouds scanned from typical engineering surfaces.
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1. Introduction

Reverse engineering refers to the process of creating engineering design data from existing physical
parts by acquiring its surface data using a scanning or measurement device. Improved data acquisition
methods, especially using laser scanning, now make it possible to process scattered point clouds in three
dimensional space with high accuracy. It has now become a realistic expectation to generate exact and
continuous models, which can be directly transferred to and utilised by CAD/CAM systems. The process
of reverse engineering can be divided into four phases: data acquisition, data preprocessing, segmentation
and surface fitting [1]. There are many different methods for acquiring shape data. Essentially, each
method uses some mechanism or phenomenon for interacting with the surface or volume of the object
of interest. There are non-contact methods, where light, sound or magnetic fields are used, and tactile
methods that use mechanical probes to touch the surface. A very good survey on the different methods
of data acquisition is given in [2].

After data acquisition, preprocessing of the data set is required for filtering noise, establishing con-
nectivity between adjacent points, reducing redundancy and merging point clouds taken from multiple
views. A major problem in this phase is that certain types of scanner produce vast amounts of data,
the processing of which presents a serious problem. Rather than process all of this data at every stage
of the reconstruction process, an alternative is to use a strategy in which the data is reduced and used
to construct a model. The full set of data is only used to improve this initial model if necessary. The
challenge in reducing the data is to maintain sufficient information from which to calculate the object
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reliably without distorting the surfaces or their boundaries. Being able to reduce such large data sets
whilst maintaining the information and accuracy contained in the original data will be advantageous for
surface reconstruction and hence for follow on activities, especially in the manufacturing process.

Much research effort has been directed at managing the amount of data points acquired by laser
scanners [3,4,10]. The approaches can be grouped into two categories; discrete space transformation
methods and neighbourhood-based filtering methods. The first category includes the discrete Fourier
transform (DFT) [1,3] and the discrete Wavelet Transform (DWT) [4]. These techniques are designed to
reduce the redundant points in 1D and 2D data sets and are typically used to speed up image transmission.
In both DFT and DWT methods reduction is achieved by filtering the high frequency component of the
data whilst maintaining the underlying structure of the image. Simlar method has been stated in [5] for
text classifiers. It is not the objective of this paper to work in this direction, where the techniques that
presented in this category do not exist in three dimensions and are practically difficult to be manipulated
with very dense 3D data.

The simplest filter method of the second category is neighbourhood averaging [1]. For each point, its
neighbourhood, in terms of Euclidean distance is identified. All points within the neighbourhood are
than simply replaced by the average value. Clearly the method is simple and relatively quick, but has
little shape preserving properties since it will tend to smooth any shape variation. This is especially true
of edge points. The median filter [6] is less affected by extreme data values and is therefore better at
preserving edge points. It places a grid structure such that all cells contain the same number of points.
The median value of all points within a cell is determined and all points within a cell are replaced by
this single value. The approach is simple and relatively quick but due to the grid being uniform, regions
of the point cloud can be underrepresented and hence the method is insensitive to shape. The method is
ideal for data scanned from planar structures and for correcting inaccuracies in a single axis direction.
It is less successful for non-planar data. When the x and y coordinates are determined more accurately
than z values, the method is faithful but can fail otherwise. Furthermore, to find the median point, a
grid is fitted to a suitable analytic surface, i.e. planar, cylindrical, and spherical, etc., where the distances
between a surface and the points are estimated and a point with median distance is selected as median
point. Clearly this introduces inaccuracies into the method.

To avoid the limitation of the median filtering methods, partitioning of the points into cells using
geometric constraints has been proposed [7]. Points in a cell are used to construct a plane of best fit.
If the average distance of the points in a cell to its plane of best fit is greater than some user defined
threshold, the cell is subdivided. This process continues until all cells are within the threshold. The data
is reduced by selecting the point with median distance. These methods work faithfully and are stable
when applied to planar and non-planar data. The accuracy is dependent on the accuracy and distribution
of the scanned data. Regions with sparse data coverage give poor reduction results as do data sets with
non-homogenous sampling accuracy.

Filter-based methods that try to constrain the factor ratio of scanned data, have been presented for
subsampling the data, including randomized sampling, uniform sampling, normal-space sampling and
covariance sampling [8,9]. Randomized sampling selects points at random, uniform sampling draws
samples equally distributed samples from the input point cloud. Normal space sampling, as proposed by
Rusinkiewicz and Levoy, aims at constraining transnational sliding of input meshes, generated from the
point cloud [8]. Their algorithm tries to ensure that the normals of the selected points uniformly populate
the sphere of directions. Covariance sampling as proposed by Levoy et al. [9] and extends the nomal
space approach. They identify whether a pair of meshes will be unstable in the iterative closest point
(ICP) algorithms by estimating a covariance matrix from a sparse uniform sampling of the input [9]. The
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computational expense of the iterative closest point algorithm depends mainly on the number of points.
In a brute force implementation the point pairing is in O(n2).

Recently, Yan et al. [10] presented an overview of the popularly used the feature extraction and
selection algorithms under a unified framework. Then dimensionality reduction method is improved for
large-scale and streaming data classification tasks. It can be used to improve both the efficiency and
the effectiveness of classifiers and is designed under the an optimization criterion for feature extraction.
However, Zanaty [11] presented an efficient method for reducing a dense data. The algorithm starts by
estimating the neighbourhood of the points, whereby the surface normal is obtained by fitting the best
quadratic to the neighbourhood of the points. After that the normals vectors are assigned to the points.
Then, an initial partitioning of data points into cells is obtained. A procedure is used to reduce the data
in each cell. Surprisingly, little work has been done to combine real data reduction and hold only the
pre-processed data for further analysis. Such work is a crucial importance since it is extremely difficult
to work with dense data in reverse engineering processes for obtaining a full CAD-model.

In general, filter-based methods which partition the data into cell which contain both edge and face
points as in [6–11] can distort the representation of the original surface shape especially on boundaries.
If a cell contains both edge and face points, the filtered value will be mix of both point types and hence
could misrepresent the true shape. To address the shortcomings of filter-based methods, an alternative
method is presented that has improved shape preserving properties and incorporates constrained filtering
to help reduce data distortion. The proposed method is based on a discrete Gaussian image of the scanned
points which is obtained by estimating surface normals and projecting them into a Gaussian sphere. By
using the discrete Gaussian image constructed from estimated normals at all points, shape is allowed to
influence the data reduction process. The techniques in [6–11] work on 3D digitized data, i.e. the points
have been processed according to x, y, and z positions while it is the first time that the Gaussian image
is used for data reduction. Clearly, the proposed method is more complex than existing filter-based
methods and as a consequence will require more processing time. However, since normals are of use in
follow on activities, this overhead may be deemed acceptable. Comparative results are also presented to
prove that the proposed method is very accurate with dense and non dense data and ideally suited as a
pre-process for segmentation and surface fitting.

The remainder of this paper is organized as follows: In Section 2, an overview of the proposed method
is given and its advantages over existing filter-based methods are highlight. Section 3 discusses the
estimation of the normal vector at each point. The method of partitioning the points is given in Section 4.
In Section 5, a reference direction is determined and used in the method of point reduction, which is
detailed in Section 6. The performance of the proposed method is illustrated by application to a variety of
simulated and scanned data and the results are presented in Section 7. Comparative results are presented
in Section 8. The paper is concluded in Section 9 by summarising the advantages of the proposed method
and assessing its overall performance.

2. The Gaussian image based method

The method begins with a set of n unordered noisy 3D points, typically captured using a laser scanner.
It is assumed that the data has been pre-processed to remove gross outliers [12]. Unit normals are
estimated for each data point and projected into the Gaussian sphere, resulting in a discrete version of
the Gaussian image. This 2D image is then partitioned into a number of cells, based on the Euclidean
distances between points, where the dense points can be partitioned based on their coordinates. Each
cell is then covered by a grid such that the number of points within each cell is governed by the Gaussian
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Fig. 1. Gauss map of a unit normal vector gives a point on S2.

image and hence the local shape of the cell. Finally, the number of points in all cells is reduced in
turn. Limitations of existing filter-based methods are overcome by using shape information contained in
the estimated normals and a grid structure that reflects both the shape of the data and the intended data
reduction ratio.

3. Estimating normal vectors

Estimation of surface normals is a fundamental task in many reverse engineering algorithms. A number
of methods to estimate the normal of a point from discrete information have been proposed. The majority
estimate normals from a locally fitted least squares surface. For each point, the k-nearest neighbours,
Ωk, computed in terms of Euclidean distance, ∇, are determined. Then a low order surface is fitted
to the neighbourhood from which the normals are readily computed. A variety of surface forms have
been proposed ranging from planar [13], quadratic or cubic [14] and parametric quadratic surfaces [12].
However, the most widely used method is based on the Darboux-frame [15] which fits a local explicit
surface of the form: Z(x, y) = ax2 +bxy+cy2. The method is stable and easy to implement, however it
has limited geometric shape description. To overcome this, an explicit general quadratic surface has been
proposed [16] with reported improved accuracy of estimated surface characteristics. Since the Gaussian
image is constructed using the estimated normals, the approach is to use the general implicit quadratic
surface,S, represented by: F (x, y, z) = a1x

2+a2y
2+a3z

2+a4xy+a5yz+a6xz+a7x+a8y+a9+a10 =
0 to approximate the local surface of Ωk. Here, we use the computation of the normal vectors of the last
method [16], as this method is found to be powerful in normal vectors computation and works very well
for dense data.

4. Partitioning of points

4.1. Gaussian image estimation

Normal vectors, n : i = 1, . . . , n are estimated at each data point. The Gauss map is the map from
the surface M to the unit 2-sphere. Each unit normal vector on M becomes a point on S 2 (Fig. 1).
The Gaussian image of an arbitrary surface is some set on the unit 2-sphere (Fig. 2). For example the
Gaussian image of a developable surface is a curve (Fig. 3).

The Gaussian image can now be subdivided into a number of discrete cells using the uniform grid.
All planar cells will have the same normal direction resulting in a dense point in the Gaussian image.
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Fig. 2. Gauss map of normals give points on S2.

Thus whilst the scanned data set may have many faces in the same plane, the algorithm treats them as a
single face for the purpose of reduction. Once the plane has been reduced, it is then mapped back onto
the individual faces in the original scanned data.

4.2. Partitioning Gauss points si

Let each 3D point p ∈ Pi be assigned to the corresponding 2D points s i ∈ S on a 2-sphere. Further,

let sm = n−1
n∑

i=1
si be the center mass point. The next step is to subdivide the s i into some cells. This

can easily be done by sorting si into an array D according to their Euclidean distances, ∇i, to the point
sm. To subdivide the array D into cells, the top point sj in D is selected and the Euclidean distance
between this point and its µ-neighbor points from the top of the array is computed. µ is a user prescribed
value depending on the size of the given data set, n, that can be used to optimize the processing time.
The results are not depend on µ, however larger values result in more processing time. For the data sets
considered when n < 20000 a suitable value is µ = 200, for 20000 < n < 40000; µ = 1000 and for n >
40000, µ = 10000. A point is extracted from D if it has Euclidean distance smaller than a threshold ξ.
For instance, let Tj = {s1, s2, . . ., s3, sβj

} be a cell of D if |sj − st| � ξ∀t = 1, . . ., βj , where ξ is a user
defined parameter and βj is the number of points in the j-th cell which varies with the parts’s shape. The
partitioning of Gauss points into cells is outlined in Algorithm 1. If a Tj contains more Gauss points than
a user defined limit υ, it is further subdivided using Algorithm 2. Clearly the parameter υ determines
the maximum number of points in each cell. Experimental evidence suggests using υ = k although the
algorithm appears to be stable with regards to choice of υ. This process is repeated by selecting the next
top point from D.
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Fig. 3. Construction of cells from the Gaussian image.

When all the Gauss points, si, have been partitioned into cells Tj , the corresponding data points pi,
i = 1, . . ., βj are placed into the corresponding cell Cj (where the j-th is the index of a cell) (Fig. 3).

Algorithm 1: Partition si

1. Compute the center mass point, sm

2. Sort si, i = 1, 2, . . ., n in an array D according to the Euclidean distance,∇ i, to sm

3. Select the first/next point in D; compute ∇i’s between this point and its µ neighbours
4. Count the number neighbour points with ∇i � ξ

5. If the counter > υ then apply algorithm 2 to further partition the cell
6. Place corresponding data points pi and corresponding normals, ni, into cell Cj

7. Remove the extracted points from D

8. Repeat steps 3–6 until all the points in D have been processed

Algorithm 2: Subdivision of cell Tj

1. Sort the points into a 1D array and subdivide the data into two equal sized cells according to their
positions in x-direction (or y-,z-).

2. The data is subdivided according to their x-positions.
3. If the number of the points in a cell < υ goto step 6 in Algorithm 1; else subdivide the points again

according to their y-positions, repeating for z if necessary.
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5. Reference direction selection

At this stage, all the 3D data points have been partitioned into cells containing βj points, and corre-
sponding estimated normal vectors, n : i = 1, . . . , n. An arbitrary direction is now chosen as a reference
direction. Since the reduction process is independent of this direction, a suitable choice is the unit vector

along the x-axis i.e.
⇀

N = (1, 0, 0) (Fig. 4). The angles between the reference direction and all the normal
vectors within a cell are determined, along with the extreme values θmin, θmax (Fig. 4).

Three types of Gauss points are identified. Firstly, points lying on the edge are called edge points.
Points that lie inside the boundaries are face points and points that lie on the sharp edges are called sharp
edge points. Figure 5 illustrates a face point C0 and a sharp point C3 [17]. These points have different
geometric properties and can be identified by comparing angles.

6. 3D Points reduction

The Gaussian points si in each cell are assigned their corresponding estimated normal vector n : i =
1, . . . , βj . From algorithm 1, the Gaussian points are subdivided into several cells, these cells are used
as input of the algorithm 3. It is noted that as a consequence of the algorithm 1, cells either contain all
edge points or all face points. Edge and face points are readily differentiated since the relative distance
between these points in the Gaussian image is large due to the nature their normals. This is especially
true for sharp edges [17]. Since cells are treated independently, edges are better preserved during the
point reduction process.

Figure 5 shows that points are placed in different cells based on angles. The angle criterion guarantees
that the angle between two normal vectors in a cell is smaller than a prescribe value, η, i.e. let θmax =
θmin + ∆, then θmax − θmin = ∆, with |∆| � η for each cell. If |∆| � η, the cell is partitioned again.
The angle, |∆| characterises the difference between the two normals; if |∆| is large, the two points have
different geometric properties, when |∆| = 0 the two points have identical geometric properties, and
when |∆| is small, the two points have similar geometric properties.

The average of the angles, θ = β−1
βj∑

i=1
θi, in cell Cj is computed and the nearest angle, to within some

user defined tolerance, λ to θi and its neighbours is chosen. The corresponding 3D point (and normal)
is chosen as representative of the cell whilst all other points are removed.
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Fig. 5. Estimation of normal angle for assigning points to cells.

There are three user defined parameters within the data reduction process, λ, ξ, η. The two threshold
parameters ξ and η control the reduction ratio defined as the number of points removed to the original
number of points. Decreasing both ξ and η, increases the reduction ratio. λ is a user defined tolerance
which determines how close to the cell average angle a point has to be selected as representative of that
cell. Arbitrary values of ξ = η = 0.1; and υ = k have been used throughout. These parameters can be
used to control the overall sensitivity of the reduction process.

Algorithm 3

1. Set j = 1.

2. Define
⇀

N .
3. Select normal vectors n : i = 1, . . . , βj in cell Cj .

4. Compute angles, θi, between
⇀

N and n.
5. If |θmax − θmin| > η, apply algorithm 1 to further partition the cell.

6. Else compute reference angle θ = β−1
βj∑

i=1
θi

7. Select θi, s.t. |θ−θi| < λ ι = 1 . . . βj , where λ is a user defined value.
8. Find corresponding unit normals of θi.
9. Select corresponding original points.
10. Remove residual points in Cj .
11. j = j + 1.
12. Repeat step 3 through 6 until all the cells have been processed.

7. Experimental results

To assess the performance of the proposed reduction algorithm, it is applied to simulated and actual
scanned data. Before applying the reduction algorithm, the initial point cloud is pre-processed to remove
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(a) (b)

Fig. 6. (a) Planar data n = 1654, mse = 0.9670; (b) Reduced set n = 805, mse = 0.010043;

any gross outliers. For surface normal estimation, experimental evidence suggests that data sets with
noise greater than sampling tolerances or that consists of scan lines with large distance variability, a
neighbourhood size of k = 16 is acceptable [18] and this is used in all test cases.

In a typical reverse engineering process such as segmentation, fitting, surface continuity, integration,
and reconstruction, once a point cloud has been reduced it would be used to firstly to determine the most
likely data segmentation, followed by surface fitting, integration and finally surface reconstruction(more
discussion can be shown in [14]). Thus three tests have been performed on different data types based
on these processes. Firstly, the performance of the reduction algorithm is assessed by fitting a surface
to the data points pre- and post-reduction using standard least squares (LS) [18]. The expectation here
is that if the method is performing well, the resulting LS fit should improve as the data is reduced.
The error metric is taken as the average of the orthogonal distances between the fitted surface and the
points. The second test is to apply the segmentation processes pre- and post-reduction using the proposed
method [18]. Finally, the effects of the data reduction algorithm on the process of surface reconstruction
is considered.

There are three user defined parameters within the data reduction process, λ, ξ, η. To find a suitable
value of these parameters, we test the proposed algorithm using different data sets (as shown in Figs 6(a)–
11(a)) under changing the parameters ξ = η. The reduction ratio of the given data is changed, decreasing
both ξ and η, increases the reduction ratio (see Table 1(a, b)). For example, when ξ = 0.5, the reduction
ratio (17% of planar set, 14% of cylinder set, 7% of sphere set, and 7% of cone set of points) is smaller
than when ξ = 0.1 (51% of planar set, 70% of cylinder set, 73% of sphere set, and 70% of cone set of
points), but the fitting process becomes unstable for small ξ. Here the thresholds for the experiments
were fixed at ξ = η = 0.1, where these values give always accurate results and are stable in all tested
cases as shown in Table 1 (a, b). However λ, and µ are fixed at 0.025 and 200 respectively.

7.1. Surface fitting

Simulated data sets are considered first, i.e. point clouds are taken from analytic object and then
segmented into planar and cylindrical components as in Figs 6(a),7(a) and 8(a). To assess the performance
of the algorithm in the presence of noise, the point clouds in the Figs 9(a), 10(a) and 11(a), point clouds
are taken from analytic surface to which a number of randomly distributed noise points are superimposed
(1.0% of original data size). The level of noise is generally larger than those typically expected in real
data (0.1%) [14] so that the reduction method can be assessed in extreme cases.

The results of applying the reduction algorithm a number of times (the order) as shown in Figs 6(b)–
11(b) and 7(c) and the resulting mean errors after performing a LS fit are given in Table 2. For example,
2676 points were sampled from analytic surface: Cylinder part A (see Fig. 8(a)). Fitting a cylinder
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Table 1
(a), (b)Various reduced data sets under changing the parameters ξ = η

ξ = η Planar set (1654 points) Cylinder set (12000)
Number of points Mean error Reduction ratio Number of points Mean error Reduction ratio (%)

0.5 1377 0.9543 17 10266 1.543 14
0.4 1105 0.8754 33 8978 1.823 25
0.3 979 0.3476 40 6234 0.942 48
0.2 879 0.1011 47 5143 0.321 57
0.1 805 0.01005 51 3543 0.034 70
0.05 577 0.01007 65 1087 0.154 90
0.09 388 0.31004 77 834 1.397 93
0.001 210 0.31004 87 654 4.674 94

(a)
ξ = η Planar set (12786 points) Cylinder set (20000)

Number of points Mean error Reduction ratio Number of points Mean error Reduction ratio (%)
0.5 11799 1.576 7 18543 2.586 7
0.4 10347 0.7071 19 15965 2.642 20
0.3 8634 0.088 32 1987 1.734 40
0.2 5721 0.0517 55 9643 0.678 51
0.1 3265 0.0034 73 5932 0.983 70
0.05 1087 1.00326 91 2314 1.546 88
0.09 876 2.0321 93 1324 3.543 93
0.001 670 4.1839 95 1076 7.914 95

(b)

(a) (b) (c)

Fig. 7. (a) Cylindrical data(A) n = 2676, mse = 1.0094; (b) Reduced set n = 1900, mse = 0.002376; (c) Reduced again n =
570, mse = 0.002029.

using LS resulted in a mean square error (mse) = 1.0094. The point set was then reduced twice. For
the first reduction D = 1, the resulting number of points was 1900 (reduction ratio of 29%), with mse =
0.002376. A second reduction, D = 2 gave 500 points (reduction ratio 82%) with mse = 0.002029. The
results for all the test cases exhibit the same improved LS fit as can be seen from Table 2. These results
indicates that the proposed method reduces the point set whilst maintaining the integrity of the reduced
point cloud, i.e. enough data is retained to accurately describe the underlying analytic surface.

Due to a scanner measurement, high speed data acquisition can be achieved. These devices can
generate thousands of points per second, and now is often becomes a problem to work with these points,
because these machines can scan parts with very high speed and much noise points. The reducing points
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(a) (b)

Fig. 8. (a) Cylindrical data(B) n = 1854, mse = 2.0054; (b) Reduced set n = 753, mse = 0.000092.

(a) (b)

Fig. 9. (a) Sphere n = 12786 mse = 2.0054; (b) Reduced n = 3265 mse = 0.0034.

(a) (b)

Fig. 10. (a) Cone n = 20000 mse = 2.8743; (b) Reduced data n = 5432, mse = 0.9832.

here has two advantages; first decreasing the noise effect on the reverse engineering processes such as
fitting, for instance mse = 0.967 in case of 1654 points as in Fig. 6(a), but mse becomes 0.010043 in
case of 803 points. If the scanner captures the surface data of a excellent accuracy, then mse became
stable in all reduction steps.

Second, decreasing the process time in all reverse engineering process, as an instance, in Fig. 10(a, b)
we will work with 5432 instead of 20000 points in all reverse engineering algorithms, especially much
algorithms are demanded for creating CAD model from these data. Also computer RAM can not be
able to work with these algorithms in case of large data (such as object has several thousand or million
points).
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Table 2
Scanned analytic surfaces with simulate noise

Surface Number of points mse Reduction degree (D) Reduction Ratio (%)
Plane 1654 0.9670 0

803 0.010043 1 51
Cylinder A 2676 1.0094 0

1900 0.002376 1 29
500 0.002029 2 82

Cylinder B 1854 2.0054 0
783 0.000092 1 58

Sphere 12786 2.0054 0
3265 0.0034 1 73

Cone 20000 2.7824 0
5432 0.9832 1 73

12000 1.8743 0
Cylinder C 3543 0.0346 1 70

(a) (b)

Fig. 11. Cylinder (C) n = 12000, mse = 1.8743; (b) Cylinder n = 3543, mse = 0.0346.

7.2. Segmenting data sets

To assess the affect of the proposed data reduction algorithm on the segmentation process, two
different benchmark data sets: RevolutionBlock (90974 points) and model (54854 points) [18] are
segmented [16] pre- and post-reduction and the resulting segmentations are visually compared. Here, we
use the segmentation algorithm presented in [16], because it is fast and more accurate. This algorithm
will segment the given object into known geometric shapes such as plane, cone, cylinder, and sphere.
The original segmentations are shown in Figs 12(a)–13(a). Applying the reduction algorithm (k = 16,
η = ξ = 0.1,µ = 10000; λ = 0.025, υ = k) gives 65875 points (28% reduction) in the RevolutionBlock
set and 42231 points (23% reduction) in the model set. The resulting segmentations are shown in
Figs 12(b)–13(b). Comparing Figs 12(a, b) and 13(a, b) indicates that the data reduction has not degraded
the information and gives further evidence that the data reduction algorithm is behaving sensibly. Also,
it is noted that the number of the segments is unaffected by the reduction process: RevolutionBlock
has 18 regular segments containing 90898 points (of 90974) before reduction, and 18 regular segments
containing 64363 points (of 65875) after reduction. For the model data: 11 segments containing 52931
points (of 54854) before reduction and 11 segments containing 42031 points (of 42231) after reduction.
This gives further evidence that the proposed data reduction method is behaving sensibly.
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(a)

(b)

Fig. 12. Segmentation of model data (a) pre- (b) post reduction.

(a)

(b)

Fig. 13. Segmentation of RevolutionBlock data (a) pre- (b) post-reduction.

7.3. Surface reconstruction:

As a final check on the integrity of the data reduction algorithm, its effect on surface reconstruction
is considered. Since from previous section, the object is segmented from whole data and reduced data.
Then each segment has been fitted to a suitable surface.
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(a) (b)

Fig. 14. Before reduction (a) the data set has been segmented (b) fail to reconstruct the two faces.

(a) (b)

Fig. 15. After reduction (a) the data set has been segmented (b) two faces reconstructed.

We will try to intersect the fitted two surfaces(sphere and cylinder) of the model data in Fig. 12. We
fail to find the interestion curve in the case of the two surfaces that have been fitted to segments of points
before reduction as in Fig. 14(b). Then we will not able to create the CAD model of a given object(the
algorithms will fail).

An object comprising position continuous, non-intersecting cylinder (1080 points) and sphere (3200
points) segments taken from model data set (Fig. 12(a)) and is shown in Fig. 14(a).

A cylinder segment is fitted to the cylindrical data points resulting in the equation:

(x + 0.0002249)2 + (y − 0.00244)2 + (−0.000015)2 − r2

− [0.0004615 (x + 0.0002249) + 0.0002543 (y − 0.00244) + (z − 0.000015)]2 = 0

where (−0.0002249, 0.00244, 0.000015) is an arbitrary point on the axis vector (0.0004615, 0.0002543,
1.0) and r = 2.002 is the radius of the cylinder. Similarly, a sphere segment is fitted to the spherical
points, with center (0.0001, 0.01, −0.00003) and radius r = 2.0. The intersection curve between the two
reconstructed surfaces cannot be computed due to the errors induced in the fitting of the original points,
as shown in Fig. 14(b). The two reconstructed surfaces are not well connected and hence the intersection
curve between the surface is not available [17].

The two point data sets were reduced using the proposed method (ξ = η = 0.1; µ = 200; λ =
0.025, υ = k) resulting in a cylinder segment of 578 and a spherical segment of 721 points respectively
(Fig. 15(a)). On refitting the cylinder and sphere centers are changed slightly to (−0.00009, 0.0000056,
0.0), (0.000001,0.00007, 0.000004), the radii to r = 2.0006 and r = 2.003. The intersection between
the two surfaces can now be computed, for example, using ACIS software package (Fig. 15(b)) since the
reconstructed surfaces are well connected (see [17] for more discussion).
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Table 3
Shows the comparative fitting results and reduction ratio (%) in each data set when the proposed method and Zanaty [11]
methods are applied to different data sets

Surface Points number of the Mse of the Reduction Points number of Mse of Zanaty Reduction
proposed method proposed method ratio (%) Zanaty method method ratio (%)

Plane 803 0.010043 51 805 0.097 51
Cylinder A 500 0.002029 78 955 0.0048 65
Cylinder B 783 0.000092 59 853 0.0087 54
Sphere 3265 0.0034 73 8312 0.0760 35
Cone 5432 0.9832 73 6400 0.9870 30
Cylinder C 3543 0.0346 70 8342 0.5637 59

8. Comprative results

In order to evaluate the preformance of the proposed algorithm, we carried out some experiments
with different data sets (see Section 7). In this section, we compare the performance of the proposed
algorithm, and Zanaty method [11] which is stable and more accurate than others, more discussion can
bee seen in [11]. Thus two tests have been performed on different data types The first test, we fit a
suitable surface to the reduced points of both methods using standard least squares. The second test is to
apply the segmentation processes to both reduced data using the proposed method [18]. The number of
neighbourhood is slected k = 15, and the reduction factor is governed by parameter η = 0.1 in case of
Zanaty method [11], while the prameters ξ = η = 0.1; µ = 200; k = 15 and λ = 0.025 are given to the
proposed algorithm.

8.1. Fitting results

Mse is estimated in each fitting process. Table 3 presents the comparative fitting results and reduction
ratio (%) in each data set when the proposed method and Zanaty [11] method are applied to different
data sets.The results show that our method is more accurate than [11] with factor data reduction over
than 50%.

8.2. Segmentation results

Two different data sets: Bajaj and CurvedBox-curve data set have 16172 and 27792 points respectively.
Bajaj and CurvedBox-curve data sets are consists of 16, and 12 segments containing 16172 and 27792
points respectively. These sets are reduced using both methods. Then, the reduced sets are segmented [16]
and compare the resulting segmentation. Applying the proposed reduction algorithm gives 16 segments
containing 10543 points (34% reduction) in the Bajaj set case and 12 segments 15879 points (43%
reduction) in the CurvedBox-curve set as shown in Figs 16(a) and 17(a). While the number of segments
is changed in [11] to be 15 segments containing 12445 points (23% reduction) in the Bajaj set case, and
13 segments containing 19454 points (30% reduction) in the CurvedBox-curve set as shown in Figs 16(b)
and 17(b). Comparing Figs 16(a) and 16(b), and also 17(a) and 17(b) (in case of the number of segments)
indicates that our data reduction method improves its shape preserving nature.

9. Conclusion and future work

A filter-based 3D shape preserving technique for data reduction has been presented. The approach is
designed to handle data sets of various reverse engineering activities, including scanned (laser) of varying
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(a) (b)

Fig. 16. The segmentation of the reduced points of Bajaj data set using: (a) proposed method (b) Zanaty method [11].

(a) (b)

Fig. 17. The segmentation of the reduced points of CurvedBox-curve data set using: (a) proposed method (b) Zanaty method [11].

density. It can be used to filter data or as a post process to data segmentation or surface fitting in reverse
engineering. The algorithm uses the discrete Gaussian image which requires the estimation of surface
normals. This increases the computation time compared to existing filter-based methods, but this should
be deemed an acceptable overhead for a shape preserving reduction algorithm. The representative point
of a cell is geometrically selected rather than using a mean or median and is therefore more influenced
by the local shape of the point set. The algorithm also differentiates between interior and edge points.
Thus the reduction process is constrained so that edges can be better maintained. This is particularly
useful when the density of the scanned data is low along boundaries.

Finally the reduction process is governed by three threshold values ξ, η, λ, ξ controls the amount of
data partitioning and η controls the density of points within each cell. Thus the user is able to specify
the amount of data to be reduced and control the algorithm to suit specific data sets. For example a
large value of ξ will suffice for planar data, reducing the computational time for the reduction process.
For freeform shapes, the selection of values η, ξ is governed by the required level of data reduction.
However, if the noise level in the data is high, the thresholds cAn be reduced, effectively increasing the
number of partitions of the data and reducing the number of points and hence the variability within each
cell. λ controls how closely a point has to be to the cell average normal before it can be selected as the
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cell representative point. A smaller value should be used for extremely noisy data, whilst a more relaxed
valued should be used for non dense data.

The algorithm has been demonstrated to perform as expected, reducing the data whilst maintaining
enough shape information to reproduce the original shape. Further experimentation on data sets varying
the threshold values have produced equally encouraging results. It is therefore worthy of further
consideration.

As future research, we will extend the algorithm to recognise curvature information which should
further improve its shape preserving nature.
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